fbpx
חדו"א אונליין - תרגילים ופתרונות בחינם שיעזרו לך להצליח!

אינטגרל משולש – חישוב אינטגרל משולש עם גבולות אינטגרציה קבועים – תרגיל 4548

תרגיל 

חשבו את האינטגרל:

\int\int\int_T (2x-y+3z)dxdydz

כאשר T חסום על ידי המשטחים:

x=0,x=1,y=0,y=2,z=0,z=3

תשובה סופית


\int\int\int_T (2x-y+3z)dxdydz=27

פתרון

נציב את גבולות האינטגרציה באינטגרל ונקבל:

\int\int\int_T (2x-y+3z)dxdydz=

=\int_0^1 dx\int_0^2 dy\int_0^3 (2x-y+3z)dz=

נפתור את האינטגרל הפנימי (הימני ביותר) לפי z ונקבל:

=\int_0^1 dx\int_0^2 [2xz-yz+3\frac{z^2}{2}]_0^3 dy=

נציב את גבולות האינטגרציה במקום z:

=\int_0^1 dx\int_0^2 [(2x\cdot 3-y\cdot 3+3\cdot\frac{3^2}{2})-(2x\cdot 0-y\cdot 0+3\cdot\frac{0^2}{2})] dy=

=\int_0^1 dx\int_0^2 (6x-3y+\frac{27}{2}) dy=

שוב, נפתור את האינטגרל הפנימי (הימני ביותר), הפעם לפי y, ונקבל:

=\int_0^1 [6xy-3\cdot\frac{y^2}{2}+\frac{27}{2}y]_0^2 dx=

נציב את גבולות האינטגרציה במקום y:

=\int_0^1 [(6x\cdot 2-3\cdot\frac{2^2}{2}+\frac{27}{2}\cdot 2)-(6x\cdot 0-3\cdot\frac{0^2}{2}+\frac{27}{2}\cdot 0)] dx=

=\int_0^1 (12x-6+27) dx=

=\int_0^1 (12x+21) dx=

הגענו לאינטגרל מסוים במשתנה אחד – x. נפתור אותו:

=[12\cdot \frac{x^2}{2}+21x]_0^1=

נציב את גבולות האינטגרציה:

=(12\cdot \frac{1^2}{2}+21\cdot 1)-(12\cdot \frac{0^2}{2}+21\cdot 0)=

=6+21=

=27

עזרתי לך להבין את החומר? אשמח לתרומה צנועה של כוס קפה כאן, כדי שאוכל להעלות בכיף פתרונות נוספים 🙂
רוצה פתרונות נוספים בנושא זה או בנושאים אחרים? – ספר/י לי כאן ואשמח לעזור.
מצאת טעות? יש לך שאלה בנוגע לפתרון זה? השאיר/י תגובה למטה ואשמח לענות. 

שתפו עם חברים

כתיבת תגובה