fbpx
חדו"א אונליין - תרגילים ופתרונות בחינם שיעזרו לך להצליח!

חישוב גבול פונקציה מרובת משתנים – פונקציה עם sin – תרגיל 3122

תרגיל 

חשבו את הגבול:

\lim_{(x,y)\rightarrow (0,0)} y\sin\frac{1}{x}

תשובה סופית


\lim_{(x,y)\rightarrow (0,0)} y\sin\frac{1}{x}=0

פתרון

הפונקציה sin מופיעה בפונקציה שלנו ואנו יודעים שהיא חסומה. לכן, נשתמש בכלל הסנדביץ. נתחיל מהפונקציה החסומה שלנו:

-1\leq \sin\frac{1}{x}\leq 1

נכפול ב-y כדי לקבל את הפונקציה:

-y\leq y\sin\frac{1}{x}\leq y

מכיוון ש-y שואף לאפס, מקבלים שהאגף הימני והאגף השמאלי שואפים לאפס. לכן, מכלל הסנדביץ נובע שגם הביטוי באמצע שואף לאפס, כלומר קיבלנו:

\lim_{(x,y)\rightarrow (0,0)} y\sin\frac{1}{x}=0

עזרתי לך להבין את החומר? אשמח לתרומה צנועה של כוס קפה כאן, כדי שאוכל להעלות בכיף פתרונות נוספים 🙂
רוצה פתרונות נוספים בנושא זה או בנושאים אחרים? – ספר/י לי כאן ואשמח לעזור. 
מצאת טעות? יש לך שאלה בנוגע לפתרון זה? השאיר/י תגובה למטה ואשמח לענות. 

 

שתפו עם חברים

כתיבת תגובה