fbpx
חדו"א אונליין - תרגילים ופתרונות שיעזרו לך להצליח!

הרשמו לצפייה בכל הפתרונות

מבחנים – פיתוח טיילור מסדר שני – תרגיל 4768

תרגיל 

(שאלה זו הופיעה במבחן)

המשוואה

(z+1)e^{xy+z}=1

מגדירה את

z=z(x,y)

כפונקציה סתומה בסביבת הראשית (0,0,0).

1. מצאו את הנגזרות החלקיות:

z'_x(0,0), z'_y(0,0), z'_{xx}(0,0), z'_{xy}(0,0), z'_{yy}(0,0)

2. כתבו את פיתוח טיילור של הפונקציה z מסדר שני סביב הראשית (0,0,0).

תשובה סופית

z(x,y)\approx -\frac{xy}{2}

פתרון מפורט

לחצו כאן לפתרון מפורט של סעיף 1

פתרון זה זמין רק למנויי האתר שנהנים ממאות פתרונות מוסברים ע"י מתרגלת מצטיינת

הרשמו עכשיו

מנויים כבר? התחברו

 

 

 

עזרתי לך להבין את החומר? מצאת טעות? יש לך שאלה בנוגע לפתרון זה? כתב/י תגובה למטה ואשמח לענות 🙂

כדאי ללמוד ביחד - שתפו עכשיו

כתיבת תגובה

רוצה גישה לכל הפתרונות באתר?