fbpx
חדו"א אונליין - תרגילים ופתרונות שיעזרו לך להצליח!

הרשמו לצפייה בדפי תרגילים פתורים

חישוב גבול של פונקציה – גבול חד-צדדי עם e – תרגיל 6051

תרגיל 

חשבו את הגבול:

\lim _ { x \rightarrow 0^+} \frac {1} {1+e^{\frac{1}{x}}}

תשובה סופית


\lim _ { x \rightarrow 0^+} \frac {1} {1+e^{\frac{1}{x}}}=0

פתרון מפורט

דבר ראשון, נציב בפונקציה:

x = 0^+

ונקבל:

\frac {1} {1+e^{\frac{1}{0^+}}}=

כאשר שואפים ל-0 מימין, אנו גדולים מ-0. לכן, מתקיים:

\frac{1}{0^+}=\infty

מכאן, ההצבה נותנת:

=\frac {1} {1+e^{\infty}}=

=\frac {1} {1+\infty}=

=\frac {1} {\infty}=

=0

הערה: מספר סופי חלקֵי אינסוף מוגדר ושווה לאפס. לרשימה המלאה לחצו כאן.

 

עזרתי לך להבין את החומר? מצאת טעות? יש לך שאלה בנוגע לפתרון זה? כתב/י תגובה למטה ואשמח לענות 🙂

כדאי ללמוד ביחד - שתפו עכשיו

כתיבת תגובה

רוצה גישה לכל הפתרונות באתר?