fbpx
חדו"א אונליין - תרגילים ופתרונות בחינם שיעזרו לך להצליח!

נגזרת של פונקציה סתומה – חישוב נגזרת לפונקציה במשתנה אחד – תרגיל 3109

תרגיל 

נתון שהמשוואה:

xy^2+x^5=2x

מגדירה את הפונקציה הסתומה:

y(x)

מצאו את הנגזרת שלה.

תשובה סופית


y'(x)=\frac{-y^2-5x^4+2}{2xy}

פתרון

נשתמש במשפט הפונקציה הסתומה.

שלב ראשון, נעביר את כל האיברים במשוואה לאגף אחד:

xy^2+x^5-2x=0

שלב שני, נגדיר פונקציה חדשה. המשתנים שלה יהיו כל המשתנים המופיעים במשוואה. מקבלים את הפונקציה:

z(x,y)=xy^2+x^5-2x

כעת, נחשב את הנגזרת לפי נוסחת נגזרת לפונקציה סתומה:

y'(x)=\frac{-z'_x}{z'_y}=\frac{-(y^2+5x^4-2)}{2xy}=

=\frac{-y^2-5x^4+2}{2xy}

עזרתי לך להבין את החומר? אשמח לתרומה צנועה של כוס קפה כאן, כדי שאוכל להעלות בכיף פתרונות נוספים 🙂
רוצה פתרונות נוספים בנושא זה או בנושאים אחרים? – ספר/י לי כאן ואשמח לעזור. 
מצאת טעות? יש לך שאלה בנוגע לפתרון זה? השאיר/י תגובה למטה ואשמח לענות. 

 

שתפו עם חברים

כתיבת תגובה