fbpx
חדו"א אונליין - תרגילים ופתרונות בחינם שיעזרו לך להצליח!

כלל שרשרת במספר משתנים – הוכחת משוואה עם נגזרות חלקיות – תרגיל 6472

תרגיל 

נתון שפונקציה:

z(x,y)=\ln(e^x+e^y)

גזירה. הוכיחו שמתקיים:

z'_x+ z'_y=1

הוכחה

נחשב את הנגזרת החלקיות של z:

z'_x=\frac{1}{e^x+e^y}\cdot e^x=

=\frac{e^x}{e^x+e^y}

z'_y=\frac{1}{e^x+e^y}\cdot e^y=

=\frac{e^y}{e^x+e^y}

נציב את הנגזרות במשוואה שצריך להוכיח:

z'_x+ z'_y=

=\frac{e^x}{e^x+e^y}+\frac{e^y}{e^x+e^y}=

=\frac{e^x+e^y}{e^x+e^y}=

=1

כנדרש.

מ.ש.ל.

עזרתי לך להבין את החומר? אשמח לתרומה צנועה של כוס קפה כאן, כדי שאוכל להעלות בכיף פתרונות נוספים 🙂
רוצה פתרונות נוספים בנושא זה או בנושאים אחרים? – ספר/י לי כאן ואשמח לעזור.
מצאת טעות? יש לך שאלה בנוגע לפתרון זה? השאיר/י תגובה למטה ואשמח לענות. 

שתפו עם חברים

כתיבת תגובה